Trophic Interactions during Primary Succession: Herbivores Slow a Plant Reinvasion at Mount St. Helens.
نویسندگان
چکیده
Lupines (Lupinus lepidus var. lobbii), the earliest plant colonists of primary successional habitats at Mount St. Helens, were expected to strongly affect successional trajectories through facilitative effects. However, their effects remain localized because initially high rates of reinvasive spread were short lived, despite widespread habitat availability. We experimentally tested whether insect herbivores, by reducing plant growth and fecundity at the edge of the expanding lupine population, could curtail the rate of reinvasion and whether those herbivores had comparable impacts in the older, more successionally advanced core region. We found that removing insect herbivores increased both the areal growth of individual lupine plants and the production of new plants in the edge region, thereby accelerating the lupine's intrinsic rate of increase at the front of the lupine reinvasion. We found no such impacts of herbivory in the core region, where low plant quality or a complex of recently arrived natural enemies may hold herbivores in check. In the context of invasion theory, herbivore-mediated decreases in lupine population growth rate in the edge region translate into decreased rates of lupine spread, which we quantify here using diffusion models. In the Mount St. Helens system, decreased rate of lupine reinvasion will result in reductions in rates of soil formation, nitrogen input, and entrapment of seeds and detritus that are likely to postpone or alter trajectories of primary succession. If the type of spatial subtleties in herbivore effects we found here are common, with herbivory focused on the edge of an expanding plant population and suppressed or ineffective in the larger, denser central region (where the plants might be more readily noticed and studied), then insect herbivores may have stronger impacts on the dynamics of primary succession and plant invasions than previously recognized.
منابع مشابه
How predation can slow, stop or reverse a prey invasion.
Observations on Mount St Helens indicate that the spread of recolonizing lupin plants has been slowed due to the presence of insect herbivores and it is possible that the spread of lupins could be reversed in the future by intense insect herbivory [Fagan, W. F. and J. Bishop (2000). Trophic interactions during primary sucession: herbivores slow a plant reinvasion at Mount St. Helens. Amer. Nat....
متن کاملEcological Succession: Out of the Ash
A new study of plants recolonising the land devasted when Mount St. Helens erupted in 1980 is providing important new insights into the interactions with herbivores that determine the pattern and outcome of ecological succession.
متن کاملThe Effect of Consumers and Mutualists of Vaccinium membranaceum at Mount St. Helens: Dependence on Successional Context
In contrast to secondary succession, studies of terrestrial primary succession largely ignore the role of biotic interactions, other than plant facilitation and competition, despite the expectation that simplified interaction webs and propagule-dependent demographics may amplify the effects of consumers and mutualists. We investigated whether successional context determined the impact of consum...
متن کاملN-P Co-Limitation of Primary Production and Response of Arthropods to N and P in Early Primary Succession on Mount St. Helens Volcano
BACKGROUND The effect of low nutrient availability on plant-consumer interactions during early succession is poorly understood. The low productivity and complexity of primary successional communities are expected to limit diversity and abundance of arthropods, but few studies have examined arthropod responses to enhanced nutrient supply in this context. We investigated the effects of nitrogen (...
متن کاملWhen can herbivores slow or reverse the spread of an invading plant? A test case from Mount St. Helens.
Here we study the spatial dynamics of a coinvading consumer-resource pair. We present a theoretical treatment with extensive empirical data from a long-studied field system in which native herbivorous insects attack a population of lupine plants recolonizing a primary successional landscape created by the 1980 volcanic eruption of Mount St. Helens. Using detailed data on the life history and in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American naturalist
دوره 155 2 شماره
صفحات -
تاریخ انتشار 2000